跳转到文档内容
版本:下一个

为容器分配 BI-V150 切片

为容器分配核心和显存资源,只需配置一定大小的GPU核心 iluvatar.ai/BI-V150.vCore和GPU显存资源 iluvatar.ai/BI-V150.vMem

apiVersion: v1
kind: Pod
metadata:
name: BI-V150-poddemo
spec:
restartPolicy: Never
containers:
- name: BI-V150-poddemo
image: registry.iluvatar.com.cn:10443/saas/mr-bi150-4.3.0-x86-ubuntu22.04-py3.10-base-base:v1.0
command:
- bash
args:
- -c
- |
set -ex
echo "export LD_LIBRARY_PATH=/usr/local/corex/lib64:$LD_LIBRARY_PATH">> /root/.bashrc
cp -f /usr/local/iluvatar/lib64/libcuda.* /usr/local/corex/lib64/
cp -f /usr/local/iluvatar/lib64/libixml.* /usr/local/corex/lib64/
source /root/.bashrc
sleep 360000
resources:
requests:
iluvatar.ai/BI-V150-vgpu: 1
iluvatar.ai/BI-V150.vCore: 50
iluvatar.ai/BI-V150.vMem: 64
limits:
iluvatar.ai/BI-V150-vgpu: 1
iluvatar.ai/BI-V150.vCore: 50
iluvatar.ai/BI-V150.vMem: 64

注意: 每个 iluvatar.ai/<card-type>.vCore 单位代表 1% 的可用计算核心,每个 iluvatar.ai/<card-type>.vMem 单位代表 256MB 的设备内存