Enable Illuvatar GPU Sharing
Introduction
We now support iluvatar.ai/gpu(i.e MR-V100、BI-V150、BI-V100) by implementing most device-sharing features as nvidia-GPU, including:
GPU sharing: Each task can allocate a portion of GPU instead of a whole GPU card, thus GPU can be shared among multiple tasks.
Device Memory Control: GPUs can be allocated with certain device memory size and have made it that it does not exceed the boundary.
Device Core Control: GPUs can be allocated with limited compute cores and have made it that it does not exceed the boundary.
Device UUID Selection: You can specify which GPU devices to use or exclude using annotations.
Very Easy to use: You don't need to modify your task yaml to use our scheduler. All your GPU jobs will be automatically supported after installation.
Prerequisites
- Iluvatar gpu-manager (please consult your device provider)
- driver version > 3.1.0
Enabling GPU-sharing Support
- Deploy gpu-manager on iluvatar nodes (Please consult your device provider to aquire its package and document)
NOTICE: Install only gpu-manager, don't install gpu-admission package.
- set the devices.iluvatar.enabled=true when install hami
helm install hami hami-charts/hami --set scheduler.kubeScheduler.imageTag={your kubernetes version} --set devices.iluvatar.enabled=true
Note: The currently supported GPU models and resource names are defined in (https://github.com/Project-HAMi/HAMi/blob/master/charts/hami/templates/scheduler/device-configmap.yaml):
iluvatars:
- chipName: MR-V100
commonWord: MR-V100
resourceCountName: iluvatar.ai/MR-V100-vgpu
resourceMemoryName: iluvatar.ai/MR-V100.vMem
resourceCoreName: iluvatar.ai/MR-V100.vCore
- chipName: MR-V50
commonWord: MR-V50
resourceCountName: iluvatar.ai/MR-V50-vgpu
resourceMemoryName: iluvatar.ai/MR-V50.vMem
resourceCoreName: iluvatar.ai/MR-V50.vCore
- chipName: BI-V150
commonWord: BI-V150
resourceCountName: iluvatar.ai/BI-V150-vgpu
resourceMemoryName: iluvatar.ai/BI-V150.vMem
resourceCoreName: iluvatar.ai/BI-V150.vCore
- chipName: BI-V100
commonWord: BI-V100
resourceCountName: iluvatar.ai/BI-V100-vgpu
resourceMemoryName: iluvatar.ai/BI-V100.vMem
resourceCoreName: iluvatar.ai/BI-V100.vCore
Device Granularity
HAMi divides each Iluvatar GPU into 100 units for resource allocation. When you request a portion of a GPU, you're actually requesting a certain number of these units.
Memory Allocation
- Each unit of
iluvatar.ai/<card-type>.vMemrepresents 256MB of device memory - If you don't specify a memory request, the system will default to using 100% of the available memory
- Memory allocation is enforced with hard limits to ensure tasks don't exceed their allocated memory
Core Allocation
- Each unit of
iluvatar.ai/<card-type>.vCorerepresents 1% of the available compute cores - Core allocation is enforced with hard limits to ensure tasks don't exceed their allocated cores
- When requesting multiple GPUs, the system will automatically set the core resources based on the number of GPUs requested
Running Iluvatar jobs
Iluvatar GPUs can now be requested by a container
using the iluvatar.ai/BI-V150-vgpu, iluvatar.ai/BI-V150.vMem and iluvatar.ai/BI-V150.vCore resource type:
apiVersion: v1
kind: Pod
metadata:
name: BI-V150-poddemo
spec:
restartPolicy: Never
containers:
- name: BI-V150-poddemo
image: registry.iluvatar.com.cn:10443/saas/mr-bi150-4.3.0-x86-ubuntu22.04-py3.10-base-base:v1.0
command:
- bash
args:
- -c
- |
set -ex
echo "export LD_LIBRARY_PATH=/usr/local/corex/lib64:$LD_LIBRARY_PATH">> /root/.bashrc
cp -f /usr/local/iluvatar/lib64/libcuda.* /usr/local/corex/lib64/
cp -f /usr/local/iluvatar/lib64/libixml.* /usr/local/corex/lib64/
source /root/.bashrc
sleep 360000
resources:
requests:
iluvatar.ai/BI-V150-vgpu: 1
iluvatar.ai/BI-V150.vCore: 50
iluvatar.ai/BI-V150.vMem: 64
limits:
iluvatar.ai/BI-V150-vgpu: 1
iluvatar.ai/BI-V150.vCore: 50
iluvatar.ai/BI-V150.vMem: 64
NOTICE1: Each unit of vcuda-memory indicates 256M device memory
Device UUID Selection
You can specify which GPU devices to use or exclude using annotations:
apiVersion: v1
kind: Pod
metadata:
name: poddemo
annotations:
# Use specific GPU devices (comma-separated list)
hami.io/use-<card-type>-uuid: "device-uuid-1,device-uuid-2"
# Or exclude specific GPU devices (comma-separated list)
hami.io/no-use-<card-type>-uuid: "device-uuid-1,device-uuid-2"
spec:
# ... rest of pod spec
Finding Device UUIDs
You can find the UUIDs of Iluvatar GPUs on a node using the following command:
kubectl get pod <pod-name> -o yaml | grep -A 10 "hami.io/<card-type>-devices-allocated"
Or by examining the node annotations:
kubectl get node <node-name> -o yaml | grep -A 10 "hami.io/node-<card-type>-register"
Look for annotations containing device information in the node status.
Notes
- You need to set the following prestart command in order for the device-share to work properly
set -ex
echo "export LD_LIBRARY_PATH=/usr/local/corex/lib64:$LD_LIBRARY_PATH">> /root/.bashrc
cp -f /usr/local/iluvatar/lib64/libcuda.* /usr/local/corex/lib64/
cp -f /usr/local/iluvatar/lib64/libixml.* /usr/local/corex/lib64/
source /root/.bashrc
-
Virtualization takes effect only for containers that apply for one GPU(i.e iluvatar.ai/vgpu=1 ). When requesting multiple GPUs, the system will automatically set the core resources based on the number of GPUs requested.
-
The
iluvatar.ai/<card-type>.vMemresource is only effective wheniluvatar.ai/<card-type>-vgpu=1. -
Multi-device requests (
iluvatar.ai/<card-type>-vgpu= > 1) do not support vGPU mode.